Analysis Methods for Hadron Colliders II

Beate Heinemann

UC Berkeley and Lawrence Berkeley National Laboratory

Outline

- Lecture I:
 - Measuring a cross section
 - focus on acceptance
- Lecture II:
 - Searching for a new particle
 - focus on backgrounds
- Lecture III:
 - Measuring a property of a known particle

Search for New Particles: Experimentally

Exactly like with measuring the cross section...

But we need to observe first!

- When we don't know if a particle exists our first question is: "Does it exist?"
- => significance of signal
 - I.e. how consistent is the number of observed events with the number of background events?
 in Gaussian limit
 - Background expectation: N_{BG}
 - Expect it to fluctuate statistically by $\delta N_{BG} \sim \sqrt{N_{BG}}$
 - Signal expectation: N_{Signal}
 - Statistical Significance: N_{Signal}/δN_{BG} ~ N_{Signal} / √N_{BG}
 - Often called S/√B

	evidence	observation
significance	3σ	5 σ
Probability of stat. fluctuation	0.3%	5.7x10 ⁻⁸

Search analyses

- Primary focus is background estimate
 - Determines whether or not an observation can be made
 - Cuts for background reduction studied often using benchmark New Physics scenario
 - Also model-independent analyses attempted sometimes
- Secondary focus is acceptance/efficiency determination: required only
 - when putting an upper limit on a cross section
 - when measuring the cross section of the observed new particle
 - Need to know what it is though
 - Or quote cross section for some effective cuts

Example Analyses

- SUSY:
 - Squarks/gluinos → jets + \(\mathbb{E}_T\) (+leptons)
- Higgs:
 - Higgs -> WW

Backgrounds

- Ideally you get the backgrounds to be small
 - The smaller they are the less well you need to know them
- Estimates based on
 - Data only
 - E.g. lepton fake rates
 - Monte Carlo only
 - For well known electroweak processes
 - Monte Carlo / Data hybrid
 - For e.g. W/Z+jets or W/Z+b-jets

Squarks/Gluinos → Jets + MEt (+ leptons)

SUSY at the LHC

- Cross section much higher than at Tevatron, e.g.
 - for m(g)=400 GeV: σ_{LHC}(gg)/ σ_{Tevatron}(gg)≈20,000
 - for m(q̃)=400 GeV: σ_{LHC}(q̃q̃)/ σ_{Tevatron}(q̃q̃)≈1,000
 - Since there are a lot more gluons at the LHC (lower x)

- At higher masses more phase space to decay in cascades
 - Results in additional leptons or jets

SUSY at the LHC

- Example: m(q)~600 GeV, m(g)~700 GeV
- Require 4 jets, large missing E_T and 0 or 1 lepton

- "Effective Mass" = sum of p_⊤ of all objects
- Similar and great (!) sensitivity in both modes
- Main backgrounds: top, W/Z+jets, QCD multi-jet

But how do we know the backgrounds!?!

Instrumental Backgrounds

- Missing E_T distribution subject to many experimental effects
 - "If anything goes wrong it will affect missing E_T"

Sources of Instrumental Background

- Calorimeter Noise
 - Hot cells / coherent noise
 - Usually localized and can be rejected
- Calorimeter dead regions
 - Should only happen rarely in some runs
 - Should be removed by DQ criteria
- Cosmic rays and beam halo muons showering hard in calorimeter
 - Usually have no vertex but can overlap with MinBias event
 - Then have small tracking activity compared to calorimeter activity
 - Shower often only in hadronic calorimeter
- Example handles:
 - Track/calorimeter matches
 - Is direction of missing energy uniform?

Beam-Halo Muon Background

- Muon that comes from beam and goes through shielding
- Can cause showers in calorimeters
 - Shower usually looks not very much like physics jet
 - Often spike at certain azimuthal angles: π
 - But there is lots of those muons!
 - Can even cause problem for trigger rate

Some Cosmics and Beam-halo events

- Bigger problem for mono-jet than for multi-jet searches
- Can use
 - topological filters to reject events
 - Track matching calorimeter cluster

Instrumental Background: Studies with Cosmics

- Can learn a lot from cosmic ray data taking
 - ATLAS and CMS took cosmics for several weeks of running

2008 data: noise in random trigger

Developing cuts against cosmic Ray background

Amazing how well these properties are modeled by the cosmics simulation

Physics Backgrounds

- QCD multi-jet (mosty for 0-lepton case)
 - Missing E_T due to
 - Poor jet resolution / cracks in calorimeters
 - Neutrino momentum in semi-leptonic b/c- decays
- W/Z+jets
 - Missing E_T due to v's from $Z\rightarrow vv$, $W\rightarrow lv$
- Top
 - Missing E_T due to ν 's from tt→WbWb → $I\nu$ +X

How do we estimate them?

QCD Multi-jet

- Require large Δφ
 - Between missing E_T and jets and between jets
 - Suppresses QCD dijet background due to jet mismeasurements

Methods to estimate remaining QCD multi-jet Background

1. CDF uses MC

- Validate in region of low ∆Фand low MET
- Extrapolate to large using MC
- Problem:
 - Relies on full MC simulation which can take "forever"
- 2. Parameterize truth jets with response function from full simulation
 - Validate against full simulation
 - Validate in region of lower MET
 - Advantage:
 - Do not need to simulate as many events
 - Need to make sure though that parameterization is really working

Using Z(→11)+jets for estimating W/Z+iet background

- Use $Z(\rightarrow II)$ +jets to extrapolate to $Z(\rightarrow vv)$ +jets
 - $ME_T \sim p_T(Z)$

$$N_{Z \to \nu \bar{\nu}}(E_{\mathrm{T}}^{\mathrm{miss}}) = N_{Z \to \ell^+ \ell^-}(p_T(\ell^+ \ell^-)) \times c_{\mathrm{Kin}}(p_T(Z)) \times c_{\mathrm{Fidu}}(p_T(Z)) \times \frac{\mathrm{Br}(Z \to \nu \bar{\nu})}{\mathrm{Br}(Z \to \ell^+ \ell^-)},$$

derived Z→vv

W+jets background estimate

- Use Z->II +jets also for this background too
 - Rely on theoretical prediction for W+jets vs Z+jets
 - This is well known though (<15%)!

Top and W+jets background estimate

- Use region of low m_T(W)
 - Extrapolate to signal region using MC
 - But may be contaminated by SUSY => overestimate BG

Top and W+jets background estimate

- Use region of low m_⊤(W)
 - Extrapolate to signal region using MC
 - But may be contaminated by SUSY => overestimate
 - depending on specifics of model
 - Can attempt "SUSY background subtraction" to correct for it

900 1000

W+jets, Z+jets and Top background

- Checks at Tevatron 0-lepton analysis
 - Background sources:
 - W/Z+jets, top
 - Suppressed by vetoes:
 - Events with jet with EM fraction>90%
 - » Rejects electrons
 - Events with isolated track
 - » Rejects muons, taus and electrons
 - Define control regions:
 - W/Z+jets, top
 - Make all selection cuts but invert lepton vetoes
 - Gives confidence in those background estimates
 - Modeled using Alpgen MC
 - Cross sections determined using NLO calculation
- May not work at LHC due to expectation of large cascade decays

Final Analysis Plots at the Tevatron

Data agree with background estimate => derive limits

Cross Section Limits

- No excess in data
 - Evaluate upper limit on cross section
 - Find out where it crosses with theory
- Theory has large uncertainty: ~30%
 - Crossing point with theory lower bound ~ represents limit on squark/gluino mass

Squark and Gluino Mass Limits

- Set constraints on masses at EWK scale:
 - M(g̃)>308 GeV
 - M(q̃)>379 GeV
- Can also represented in terms of GUT scale parameters
 - Within constrained models

LHC SUSY Discovery Reach

- With 1 fb⁻¹:
 - Sensitive to m(g)<1000 GeV/c²
- With 10 fb⁻¹:
 - Sensitive to m(g)<1800 GeV/c²
- Amazing potential!
 - If data can be understood
 - If current MC predictions are ≈ok

The Higgs Boson

Higgs Production: Tevatron and LHC

dominant: gg→ H, subdominant: HW, HZ, Hqq

Higgs Boson Decay

- Depends on Mass
- M_H<130 GeV/c²:
 - bbิ dominant
 - WW and ττ subdominant
 - γγ small but useful
- $M_H > 130 \text{ GeV/c}^2$:
 - WW dominant
 - ZZ cleanest

$H \rightarrow WW(*) \rightarrow 1^{+}1^{-}vv$

- Higgs mass reconstruction impossible due to two neutrinos in final state
- Make use of spin correlations to suppress WW background:
 - Higgs is scalar: spin=0
 - leptons in H → WW^(*) → I⁺I⁻vv are collinear
- Main background:
 - WW production

H-WW^(*)-1+1 \sim v (1=e, μ)

Event selection:

- 2 isolated e/μ:
 - $p_T > 15$, 10 GeV
- Missing E_T > 20 GeV
- Veto on
 - Z resonance
 - Energetic jets

Main backgrounds

- SM WW production
- Top
- Drell-Yan
- Fake leptons

Plot everything under the sun

 to convince yourself you have the background right

Jets faking Electrons

- Jets can pass electron ID cuts,
 - Mostly due to
 - early showering charged pions
 - Conversions: $\pi^0 \rightarrow \gamma \gamma \rightarrow ee + X$
 - Semileptonic b-decays
 - Difficult to model in MC
 - Hard fragmentation
 - Detailed simulation of calorimeter and tracking volume
- Measured in inclusive jet data at various E_⊤ thresholds
 - Prompt electron content negligible:
 - N_{iet}~10 billion at 50 GeV!
 - Fake rate per jet:

	CDF	ATLAS
Loose cuts	5x10 ⁻⁴	5x10 ⁻³
Tight cuts	1x10 ⁻⁴	1x10 ⁻⁵

Typical uncertainties 50%

Plot Everything Under the Sun..

- Validates the background prediction
 - Very often these plots "don't work" since there is some problem
 - Now plug all into sophisticated techniques!

NN Output

$M_H = 160 \text{ GeV}/c^2$					
$t\bar{t}$	1.35	士	0.21		
DY	80	\pm	18		
WW	318	\pm	35		
WZ	14	\pm	1.9		
ZZ	20.7	\pm	2.8		
W+jets	113	\pm	27		
$W\gamma$	92	\pm	25		
Total Background	637	士	67		
$gg \to H$	9.5	士	1.4		
Total Signal	9.5	士	1.4		
Data	654				

- Data agree well with background hypothesis
 - S/B ~0.3 at high NN values

Higgs Cross Section Limit

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

- 160 < m_H < 170 GeV excluded at 95% C.L.
 - Note that the limit is ~1σ better than expected
- For m_H=120 GeV: $\sigma_{limit} / \sigma_{SM} = 2.8$

Early Higgs Signals at LHC

LHC has about 4 times better signal / background than Tevatron

LHC SM Higgs Discovery Potential

- 5σ discovery over full mass range with ~20 fb⁻¹
 - Most challenging at low mass
- 95% exclusion over full mass range with ~4 fb⁻¹

Conclusions

- Background estimate most crucial aspect for searches
- LHC has an amazing discovery potential
 - Supersymmetry already with ~100 pb⁻¹
 - Also other high mass particles, e.g.
 - Z', Extra Dimensions, 4th generation quarks, ...
 - Higgs boson: 1-10 fb⁻¹
- Let's hope that many exciting things will be found!!!

Some Remarks on Advanced Analysis Techniques

Quite a few techniques available:

- Neural Network, Likelihood, Boosted Decision Tree, Matrix Element, ...
- No clear winner has yet been identified
 - Some are more transparent than others

Why do we trust them less than simple analyses?

- Simple kinematic quantities can be calculated at NLO by theorists while e.g. NN distribution cannot
 - Gives confidence, good cross-check!
- Techniques exploit correlations between variables
 - Harder to understand if the MC models correlations correctly
 - More validation needed (=> analysis takes longer)
- Less transparent
 - Worry is always that it exploits some MC feature that does not reflect the data

Can and has been done of course though

But only in mature experiments